Steigen Sie ein in die faszinierende Welt des Deutschen Zentrums für Luft- und Raumfahrt (DLR), um mit Forschung und Innovation die Zukunft mitzugestalten Mit dem Know-how und der Neugier unserer 11.000 Mitarbeitenden aus 100 Nationen sowie unserer einzigartigen Infrastruktur, bieten wir ein spannendes und inspirierendes Arbeitsumfeld. Gemeinsam entwickeln wir nachhaltige Technologien und tragen so zur Lösung globaler Herausforderungen bei. Möchten Sie diese große Zukunftsaufgabe mit uns zusammen angehen? Dann ist Ihr Platz bei uns For our Institut of Flight Systems in Braunschweig we are looking for a Student Mechanical Engineering, Computer Science, Safety Engineering or similar (f/m/x), Explainable AI for Deep Learning-based health indicator construction for RUL prediction on ball bearings Das erwartet Sie: Condition monitoring systems for safety-critical flight control components are being developed at DLR's Institute of Flight Systems in Braunschweig. To predict the Remaining Useful Life (RUL) of electromechanical flight control actuators (EMA) it is necessary to monitor mechanical components such as the ball bearings, e.g. by using acceleration measurements on the EMA housing. Due to the continuous flight control surfaces adjustments combined with excessive loads during flight operation, the degradation behavior of the ball bearings becomes apparent in the monitored data. This degradation can then be modelled using deep learning-based health indicators as a basis for the RUL prediction. However, due to the black box characteristics of deep learning models, the trustworthiness of the results is limited. Improving this trustworthiness is particularly relevant for safety-critical systems. As part of a master's thesis, explainability approaches are therefore to be investigated in order to improve the trustworthiness of the results for deep learning-based health indicator construction methods. A literature review of existing deep learning-based health indicator construction methods for ball bearings and applicable explainable AI methods shall be carried out first. Subsequently, the explainable AI methods shall be implemented in Python on run-to-failure data sets for rotating ball bearings and the results shall be visualized. The aim is to better understand the degradation behavior of the ball bearings and the inherent uncertainties and to increase the accuracy of the modelled health indicator. In our department, you will be part of a dynamic and scientifically highly innovative team. You will benefit from the existing expertise and infrastructure and contribute to its continuous development in the course of your work. In addition to your thesis, employment on a part-time basis is possible. Do you have the necessary degree of personal responsibility and do you share our high standards for the scientific quality of your work? We offer you the ideal environment for personal and professional development at an internationally high level. Das erwarten wir von Ihnen: current enrollment in a Master’s program in Mechanical Engineering, Computer Science, Safety Engineering or a related field good programming skills in Python good knowledge in the field of artificial intelligence very good English language skills Unser Angebot: Das DLR steht für Vielfalt, Wertschätzung und Gleichstellung aller Menschen. Wir fördern eigenverantwortliches Arbeiten und die individuelle Weiterentwicklung unserer Mitarbeitenden im persönlichen und beruflichen Umfeld. Dafür stehen Ihnen unsere zahlreichen Fort- und Weiterbildungsmöglichkeiten zur Verfügung. Chancengerechtigkeit ist uns ein besonderes Anliegen, wir möchten daher insbesondere den Anteil von Frauen in der Wissenschaft und Führung erhöhen. Bewerbungen schwerbehinderter Menschen bevorzugen wir bei fachlicher Eignung. Weitere Angaben: Eintrittsdatum: sofort Dauer: 6 months Vergütung: Depending on qualifications and assignment of tasks up to pay group E5 TVöD. Kennziffer: 97495