„Research for a life without cancer“ is our mission at the German Cancer Research Center. We investigate how cancer develops, identify cancer risk factors and look for new cancer prevention strategies. We develop new methods with which tumors can be diagnosed more precisely and cancer patients can be treated more successfully. Every contribution counts – whether in research, administration or infrastructure. This is what makes our daily work so meaningful and exciting.
The Division of Digital Prevention, Diagnostics and Therapy Guidance is seeking for the next possible date a Data Scientist for Cancer Research (PhD Position) in the field of Large Language Models.
Reference number: 2024-0375
The German Cancer Research Center (DKFZ) is a leading international biomedical research institution. We are committed to harnessing the power of AI and data science to transform oncology. Join us in pushing the boundaries of cancer research and innovation.
The main goal of the division is the development of robust and interpretable digital tools to improve prevention, non-invasive early detection, diagnostic, and therapeutic approaches. A 20-member, almost fully externally funded team from the fields of medicine, molecular biology and informatics/data science focuses on identifying relevant patterns in patient data and increasing the explainability and robustness of deep learning-based classifications. We see software systems as part of clinical teams for more efficient patient care, and at the same time as a tool for effective prevention and early detection. In the past (since 2020), we have achieved much-noticed scientific success in these areas; our more than 80 internationally peer-reviewed research papers have been cited more than 5,000 times and numerous project results have been picked up by international media. Software products or apps from our working group have been downloaded more than a million times.
Seven recently approved grants include the MiRisk consortium (1) which develops a free app to individually determine and minimize the risk for breast cancer. Within the BAP-1-consortium (2), we share & extend our expertise in building histology image pipelines to stratify patients for drug development. The Hector grant (3) enables us to integrate spatial transcriptomics for deep-learning-based heterogeneity scores to predict melanoma metastasis. The sKIn project (4) takes the remaining technical and formal steps to build our dermatologist-like skin cancer AI into dermatoscopes together with a company, bringing them into the hands of caregivers. MELCAYA (5) identifies new risk factors for melanoma in CAYAs. A deep learning strategy for high-throughput proteomics (6) allows higher resolution and faster processing of liquid biopsies. A signed collaboration with industry will lead to more individualized sunscreen recommendations based on epigenetic tests read from smartphone photographs via AI. Improved digital analysis of sarcomas (7), the interaction of language models and care, explainable AI algorithms for cancer screening and the optimization of the Sunface & Smokerface App also depict future plans of the group.
Original Stellenanzeige mit Gehaltsinformation auf StepStone.de