E-fellows.net Stellenmarkt Jobs & Praktika suchen
Informationen zur Anzeige:
Wissenschaftlicher Mitarbeiter (Postdoc) (m/w/d)
Katholische Universität Eichstätt-Ingolstadt
Eichstätt
Aktualität: 21.12.2024
Anzeigeninhalt:
21.12.2024, Katholische Universität Eichstätt-Ingolstadt
Eichstätt
Wissenschaftlicher Mitarbeiter (Postdoc) (m/w/d)
Aufgaben:
An unserer Mathematisch-Geographischen Fakultät am Lehrstuhl für Reliable Machine Learning ist zum 15. Mai 2025 eine Vollzeitstelle als wissenschaftlicher Mitarbeiter (Postdoc) (m/w/d) befristet für die Dauer von zunächst drei Jahren zu besetzen. Eine anschließende Weiterbeschäftigung wird angestrebt. Dienstort ist Ingolstadt. Die Bezahlung erfolgt im Rahmen des privatrechtlichen Arbeitsverhältnisses bei gegebenen tariflichen Voraussetzungen nach Entgeltgruppe 13 TV-L. Die Möglichkeit zur Habilitation ist gegeben und wird ausdrücklich gewünscht. Der Lehrstuhl Reliable Machine Learning ist Teil des Mathematischen Instituts für Maschinelles Lernen und Data Science (MIDS) an der KU Eichstätt-Ingolstadt. Er ist finanziert durch die HighTech-Agenda Bayern als Bestandteil des Verbunds Resource Aware Artificial Intelligence for Future Technologies der KU Eichstätt-Ingolstadt, der FAU Erlangen-Nürnberg, der TU München und der Universität Bayreuth. Die Forschung am Lehrstuhl beschäftigt sich mit der mathematischen Analyse von Algorithmen des Machine Learning, mit einem besonderen Fokus auf Fragen der Stabilität, Berechenbarkeit und Robustheit in Bezug auf Deep Learning. Ihre Aufgaben Umsetzung eigener mathematischer Forschung im Bereich des Machine Learning Mitarbeit bei laufenden Forschungsprojekten des Lehrstuhls und Unterstützung bei der Einwerbung von Drittmitteln Unterstützung beim Aufbau des neuen Master-Studiengangs »Data Science« Lehre im Bereich Mathematik und Machine Learning, vor allem im englischsprachigen Bachelor-Studiengang »Data Science« Wissenstransfer mittels Publikationen und Teilnahme an Konferenzen Ihr Profil abgeschlossene Promotion aus dem Bereich der Mathematik, vorzugsweise mit einem Schwerpunkt in einem der folgenden Bereiche: Machine Learning (hoch-dimensionale) Wahrscheinlichkeitstheorie Funktionsanalysis Information-based Complexity Die Promotion muss zu Beginn der Tätigkeit abgeschlossen sein, aber noch nicht notwendigerweise zum Zeitpunkt der Bewerbung. Interesse an der mathematischen Analyse von Algorithmen des Machine Learning Vorzugsweise praktische Erfahrung im Bereich Programmieren und Machine Learning (nicht zwingend erforderlich) Unser Angebot Möglichkeit, eigenen Forschungsinteressen nachzugehen Möglichkeit, Erfahrungen in der Lehre zu sammeln attraktiver und teamorientierter Arbeitsplatz in einem modernen universitären Umfeld interessantes, verantwortungsvolles und vielseitiges Aufgabenspektrum internationale Kontakte Ihre Bewerbung Bitte fügen Sie Ihrer Bewerbung folgende Unterlagen bei: Anschreiben Lebenslauf Liste von Publikationen (falls vorhanden) Bescheinigung der akademischen Abschlüsse (BSc, MSc, Promotion), inklusive während des Studiums besuchter Veranstaltungen mit Noten falls bereits abgeschlossen eine Kopie der Doktorarbeit (sonst einen Entwurf) persönliches Empfehlungsschreiben Bitte senden Sie Ihre aussagekräftige Bewerbung mit den angeforderten Unterlagen bis 20. Januar 2025 per E-Mail über bewerbung@ku.de an Prof. Dr. Felix Voigtlaender (bitte alle Unterlagen in einer PDF-Datei). Eingereichte Bewerbungsunterlagen werden nach Abschluss des Einstellungsverfahrens unter Beachtung der datenschutzrechtlichen Bestimmungen vernichtet. Bitte beachten Sie die Datenschutzerklärung der KU für den Bewerbungsprozess, Informationen hierzu stehen auf der Website der KU unter zum Download bereit. Durch die Übermittlung Ihrer Bewerbung bestätigen Sie, dass Sie die Datenschutzhinweise und die Datenschutzerklärung zur Kenntnis genommen haben. Alle Beschäftigten sind verpflichtet, Wesen und Auftrag der KU anzuerkennen, wie sie im Leitbild und in der Stiftungsverfassung festgelegt sind. Wir bitten um auch in dieser Hinsicht aussagekräftige Bewerbungen. Darüber hinaus gibt es keine konfessionellen Voraussetzungen für eine Beschäftigung an der KU. Die KU fördert die Gleichstellung (m/w/d) und setzt sich für die Vereinbarkeit von Familie und Beruf ein. Schwerbehinderte Personen (m/w/d) werden bei im Wesentlichen gleicher Eignung vorrangig berücksichtigt. The Chair of Reliable Machine Learning at the Faculty of Mathematics and Geography (KU Eichstätt-Ingolstadt) invites application from highly motivated candidates for a full-time position (100%) starting May 15, 2025 as a Postdoc research associate (Wissenschaftliche/-r Mitarbeiter/-in (m/w/d)) with an initial contract duration of 3 years (with possibility for extension). The place of work will be Ingolstadt. Provided that the requirements are met, remuneration in the private-law employment relationship will be according to the pay grade E 13 TV-L. The possibility of completing a habilitation is given and is expressly desired. The Chair of Reliable Machine Learning (headed by Prof. Felix Voigtlaender) is part of the Mathematical Institute for Machine Learning and Data Science (MIDS) at the KU Eichstätt-Ingolstadt. The research group is funded by the High-Tech Agenda of Bavaria, as part of the consortium Resource Aware Artificial Intelligence for Future Technologies of the KU, the FAU Erlangen-Nürnberg, the TU Munich, and the University of Bayreuth. Research at the Chair focuses on mathematically analyzing machine learning algorithms with a particular focus on questions of stability, computability, and robustness of methods from Deep Learning. Your tasks Independent mathematical research in the area of machine learning Contribution to the current research projects of the Chair and support in the acquisition of new research projects Support in establishing the new Master's degree program in «Data Science» Teaching courses related to mathematics and machine learning (in English), in particular in the context of the Bachelor's program in «Data Science» Knowledge transfer via publications and participation in conferences Your profile PhD/doctoral degree in mathematics, preferably with a focus on one of the following topics: Machine Learning (High-dimensional) probability theory Real and functional analysis Information-based complexity The doctoral degree must not have been completed at the date of application but must be completed when starting the position. Interest in mathematical analysis of machine learning algorithms Practical experience in programming and machine learning (highly desirable but not mandatory) Good German language skills are not required but highly desirable, since some of the courses at the University must be taught in German Our offer Possibility to pursue own research Possibility to gain teaching experience Attractive and team-oriented workplace in a modern university environment Interesting, responsible, and versatile range of tasks International contacts Your application Please send your application as a single PDF file containing the following documents: Cover letter Résumé List of publications (if applicable) (Scanned) Certificates of academic degrees (BSc, MSc, PhD, etc.), including list of courses taken and grades (for the courses during the BSc/MSc degree) Electronic copy of (or the current draft of) the PhD/doctoral thesis (The PhD/doctoral degree may still be in the process of completion at the time of application, but the degree must be completed when starting the position.) Letter of recommendation Please send your application by e-mail by Januar 20, 2025, to Prof Dr. Felix Voigtlaender (bewerbung@ku.de). Application documents submitted will be destroyed/deleted after completion of the hiring process in compliance with data protection regulations. Please note the KU's privacy policy for the application process. Corresponding information can be downloaded from the KU website at By submitting your application, you confirm that you have taken note of the data protection information and the privacy policy. All employees are obliged to acknowledge the nature and mission of the KU as stipulated in its Mission Statement and Foundation Charter. The University is therefore interested in receiving applications with relevant information in this regard. There are no specific denominational requirements for being employed at the KU. The KU is committed to promoting equal opportunity (m/f/d) and aims to ensure that its members are able to balance work and family life. Candidates with severe disabilities who are equally suitable to other applicants will be prioritized. Katholische Universität Eichstätt-Ingolstadt - Footer
Qualifikationen:
An unserer Mathematisch-Geographischen Fakultät am Lehrstuhl für Reliable Machine Learning ist zum 15. Mai 2025 eine Vollzeitstelle als wissenschaftlicher Mitarbeiter (Postdoc) (m/w/d) befristet für die Dauer von zunächst drei Jahren zu besetzen. Eine anschließende Weiterbeschäftigung wird angestrebt. Dienstort ist Ingolstadt. Die Bezahlung erfolgt im Rahmen des privatrechtlichen Arbeitsverhältnisses bei gegebenen tariflichen Voraussetzungen nach Entgeltgruppe 13 TV-L. Die Möglichkeit zur Habilitation ist gegeben und wird ausdrücklich gewünscht. Der Lehrstuhl Reliable Machine Learning ist Teil des Mathematischen Instituts für Maschinelles Lernen und Data Science (MIDS) an der KU Eichstätt-Ingolstadt. Er ist finanziert durch die HighTech-Agenda Bayern als Bestandteil des Verbunds Resource Aware Artificial Intelligence for Future Technologies der KU Eichstätt-Ingolstadt, der FAU Erlangen-Nürnberg, der TU München und der Universität Bayreuth. Die Forschung am Lehrstuhl beschäftigt sich mit der mathematischen Analyse von Algorithmen des Machine Learning, mit einem besonderen Fokus auf Fragen der Stabilität, Berechenbarkeit und Robustheit in Bezug auf Deep Learning. Ihre Aufgaben Umsetzung eigener mathematischer Forschung im Bereich des Machine Learning Mitarbeit bei laufenden Forschungsprojekten des Lehrstuhls und Unterstützung bei der Einwerbung von Drittmitteln Unterstützung beim Aufbau des neuen Master-Studiengangs »Data Science« Lehre im Bereich Mathematik und Machine Learning, vor allem im englischsprachigen Bachelor-Studiengang »Data Science« Wissenstransfer mittels Publikationen und Teilnahme an Konferenzen Ihr Profil abgeschlossene Promotion aus dem Bereich der Mathematik, vorzugsweise mit einem Schwerpunkt in einem der folgenden Bereiche: Machine Learning (hoch-dimensionale) Wahrscheinlichkeitstheorie Funktionsanalysis Information-based Complexity Die Promotion muss zu Beginn der Tätigkeit abgeschlossen sein, aber noch nicht notwendigerweise zum Zeitpunkt der Bewerbung. Interesse an der mathematischen Analyse von Algorithmen des Machine Learning Vorzugsweise praktische Erfahrung im Bereich Programmieren und Machine Learning (nicht zwingend erforderlich) Unser Angebot Möglichkeit, eigenen Forschungsinteressen nachzugehen Möglichkeit, Erfahrungen in der Lehre zu sammeln attraktiver und teamorientierter Arbeitsplatz in einem modernen universitären Umfeld interessantes, verantwortungsvolles und vielseitiges Aufgabenspektrum internationale Kontakte Ihre Bewerbung Bitte fügen Sie Ihrer Bewerbung folgende Unterlagen bei: Anschreiben Lebenslauf Liste von Publikationen (falls vorhanden) Bescheinigung der akademischen Abschlüsse (BSc, MSc, Promotion), inklusive während des Studiums besuchter Veranstaltungen mit Noten falls bereits abgeschlossen eine Kopie der Doktorarbeit (sonst einen Entwurf) persönliches Empfehlungsschreiben Bitte senden Sie Ihre aussagekräftige Bewerbung mit den angeforderten Unterlagen bis 20. Januar 2025 per E-Mail über bewerbung@ku.de an Prof. Dr. Felix Voigtlaender (bitte alle Unterlagen in einer PDF-Datei). Eingereichte Bewerbungsunterlagen werden nach Abschluss des Einstellungsverfahrens unter Beachtung der datenschutzrechtlichen Bestimmungen vernichtet. Bitte beachten Sie die Datenschutzerklärung der KU für den Bewerbungsprozess, Informationen hierzu stehen auf der Website der KU unter zum Download bereit. Durch die Übermittlung Ihrer Bewerbung bestätigen Sie, dass Sie die Datenschutzhinweise und die Datenschutzerklärung zur Kenntnis genommen haben. Alle Beschäftigten sind verpflichtet, Wesen und Auftrag der KU anzuerkennen, wie sie im Leitbild und in der Stiftungsverfassung festgelegt sind. Wir bitten um auch in dieser Hinsicht aussagekräftige Bewerbungen. Darüber hinaus gibt es keine konfessionellen Voraussetzungen für eine Beschäftigung an der KU. Die KU fördert die Gleichstellung (m/w/d) und setzt sich für die Vereinbarkeit von Familie und Beruf ein. Schwerbehinderte Personen (m/w/d) werden bei im Wesentlichen gleicher Eignung vorrangig berücksichtigt. The Chair of Reliable Machine Learning at the Faculty of Mathematics and Geography (KU Eichstätt-Ingolstadt) invites application from highly motivated candidates for a full-time position (100%) starting May 15, 2025 as a Postdoc research associate (Wissenschaftliche/-r Mitarbeiter/-in (m/w/d)) with an initial contract duration of 3 years (with possibility for extension). The place of work will be Ingolstadt. Provided that the requirements are met, remuneration in the private-law employment relationship will be according to the pay grade E 13 TV-L. The possibility of completing a habilitation is given and is expressly desired. The Chair of Reliable Machine Learning (headed by Prof. Felix Voigtlaender) is part of the Mathematical Institute for Machine Learning and Data Science (MIDS) at the KU Eichstätt-Ingolstadt. The research group is funded by the High-Tech Agenda of Bavaria, as part of the consortium Resource Aware Artificial Intelligence for Future Technologies of the KU, the FAU Erlangen-Nürnberg, the TU Munich, and the University of Bayreuth. Research at the Chair focuses on mathematically analyzing machine learning algorithms with a particular focus on questions of stability, computability, and robustness of methods from Deep Learning. Your tasks Independent mathematical research in the area of machine learning Contribution to the current research projects of the Chair and support in the acquisition of new research projects Support in establishing the new Master's degree program in «Data Science» Teaching courses related to mathematics and machine learning (in English), in particular in the context of the Bachelor's program in «Data Science» Knowledge transfer via publications and participation in conferences Your profile PhD/doctoral degree in mathematics, preferably with a focus on one of the following topics: Machine Learning (High-dimensional) probability theory Real and functional analysis Information-based complexity The doctoral degree must not have been completed at the date of application but must be completed when starting the position. Interest in mathematical analysis of machine learning algorithms Practical experience in programming and machine learning (highly desirable but not mandatory) Good German language skills are not required but highly desirable, since some of the courses at the University must be taught in German Our offer Possibility to pursue own research Possibility to gain teaching experience Attractive and team-oriented workplace in a modern university environment Interesting, responsible, and versatile range of tasks International contacts Your application Please send your application as a single PDF file containing the following documents: Cover letter Résumé List of publications (if applicable) (Scanned) Certificates of academic degrees (BSc, MSc, PhD, etc.), including list of courses taken and grades (for the courses during the BSc/MSc degree) Electronic copy of (or the current draft of) the PhD/doctoral thesis (The PhD/doctoral degree may still be in the process of completion at the time of application, but the degree must be completed when starting the position.) Letter of recommendation Please send your application by e-mail by Januar 20, 2025, to Prof Dr. Felix Voigtlaender (bewerbung@ku.de). Application documents submitted will be destroyed/deleted after completion of the hiring process in compliance with data protection regulations. Please note the KU's privacy policy for the application process. Corresponding information can be downloaded from the KU website at By submitting your application, you confirm that you have taken note of the data protection information and the privacy policy. All employees are obliged to acknowledge the nature and mission of the KU as stipulated in its Mission Statement and Foundation Charter. The University is therefore interested in receiving applications with relevant information in this regard. There are no specific denominational requirements for being employed at the KU. The KU is committed to promoting equal opportunity (m/f/d) and aims to ensure that its members are able to balance work and family life. Candidates with severe disabilities who are equally suitable to other applicants will be prioritized. Katholische Universität Eichstätt-Ingolstadt - Footer